首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69680篇
  免费   8250篇
  国内免费   2740篇
电工技术   4094篇
技术理论   5篇
综合类   5464篇
化学工业   16019篇
金属工艺   6020篇
机械仪表   3399篇
建筑科学   7207篇
矿业工程   1071篇
能源动力   9642篇
轻工业   3245篇
水利工程   977篇
石油天然气   2827篇
武器工业   473篇
无线电   3349篇
一般工业技术   8404篇
冶金工业   3768篇
原子能技术   1391篇
自动化技术   3315篇
  2024年   129篇
  2023年   1040篇
  2022年   1854篇
  2021年   2234篇
  2020年   2311篇
  2019年   1958篇
  2018年   1758篇
  2017年   2056篇
  2016年   2397篇
  2015年   2449篇
  2014年   4092篇
  2013年   4483篇
  2012年   4834篇
  2011年   5321篇
  2010年   3951篇
  2009年   4062篇
  2008年   3417篇
  2007年   4493篇
  2006年   4097篇
  2005年   3694篇
  2004年   3131篇
  2003年   2844篇
  2002年   2516篇
  2001年   1970篇
  2000年   1599篇
  1999年   1262篇
  1998年   1068篇
  1997年   938篇
  1996年   769篇
  1995年   725篇
  1994年   582篇
  1993年   489篇
  1992年   428篇
  1991年   303篇
  1990年   261篇
  1989年   250篇
  1988年   174篇
  1987年   131篇
  1986年   110篇
  1985年   82篇
  1984年   109篇
  1983年   77篇
  1982年   69篇
  1981年   22篇
  1980年   19篇
  1979年   9篇
  1977年   5篇
  1966年   7篇
  1959年   29篇
  1951年   30篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
A hybrid multiphase model is developed to simulate the simultaneous momentum, heat and mass transfer and heterogeneous catalyzed reaction in structured catalytic porous materials. The approach relies on the combination of the volume of fluid (VOF) and Eulerian–Eulerian models, and several plug-in field functions. The VOF method is used to capture the gas–liquid interface motion, and the Eulerian–Eulerian framework solves the temperature and chemical species concentration equations for each phase. The self-defined field functions utilize a single-domain approach to overcome convergence difficulty when applying the hybrid multiphase for a multi-domain problem. The method is then applied to investigate selective removal of specific species in multicomponent reactive evaporation process. The results show that the coupling of catalytic reaction and interface species mass transfer at the phase interface is conditional, and the coupling of catalytic reaction and momentum transfer across fluid–porous interface significantly affects the conversion rate of reactants. Based on the numerical results, a strategy is proposed for matching solid catalyst with operating condition in catalytic distillation application.  相似文献   
82.
《Ceramics International》2022,48(15):21856-21867
In this work, ZnO nanowires with high aspect ratio were obtained by fast and simple electrochemical anodization. Morphological, structural and photoelectrochemical characteristics of the synthesized ZnO nanowires were evaluated by using different techniques: field emission scanning electron microscopy, atomic force microscopy, high resolution transmission electron microscopy, Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, UV–VIS spectroscopy, Mott-Schottky analysis and photoelectrochemical impedance spectroscopy. The synthesized ZnO nanowires presented high roughness and high crystallinity. Besides, surface defects were identified in the sample. The value of the donor density (ND) was in the order of 1019 cm?3 in the dark and 1020 cm?3 under illumination. In addition, the ZnO nanowires presented good photosensibility, with a photocurrent density response 85 times higher than a ZnO compact layer, and lower resistance to charge transfer. The charge transfer processes taking place at the ZnO/electrolyte interface were studied, since these processes strongly influence the photoelectrocatalytic efficiency of the material. According to the results, the charge transfer of holes in the synthesized ZnO nanowires occurs indirectly via surface states. In this regard, surface states may be an important feature for photoelectrocatalytic applications since they could provide lower onset voltages and higher anodic current densities.  相似文献   
83.
Lifelog is a digital record of an individual’s daily life. It collects, records, and archives a large amount of unstructured data; therefore, techniques are required to organize and summarize those data for easy retrieval. Lifelogging has been utilized for diverse applications including healthcare, self-tracking, and entertainment, among others. With regard to the image-based lifelogging, even though most users prefer to present photos with facial expressions that allow us to infer their emotions, there have been few studies on lifelogging techniques that focus upon users’ emotions. In this paper, we develop a system that extracts users’ own photos from their smartphones and configures their lifelogs with a focus on their emotions. We design an emotion classifier based on convolutional neural networks (CNN) to predict the users’ emotions. To train the model, we create a new dataset by collecting facial images from the CelebFaces Attributes (CelebA) dataset and labeling their facial emotion expressions, and by integrating parts of the Radboud Faces Database (RaFD). Our dataset consists of 4,715 high-resolution images. We propose Representative Emotional Data Extraction Scheme (REDES) to select representative photos based on inferring users’ emotions from their facial expressions. In addition, we develop a system that allows users to easily configure diaries for a special day and summaize their lifelogs. Our experimental results show that our method is able to effectively incorporate emotions into lifelog, allowing an enriched experience.  相似文献   
84.
针对电力机车上某功率密度为1.27 kW/kg的平行流式电机周向水套结构的散热问题进行了研究。首先利用热阻网络法建立了平行流多通道截面的热阻数学模型;然后借助FLUENT软件对水套的电机散热过程进行了数值模拟,并对结构参数进行了优化;最后通过实验验证了计算的正确性。结果表明:当通道孔数n增大时,总热阻普遍减小;当通道单孔宽度x增大时,总热阻先增大后减小,当n=6个、x=1.670 mm时,水套具有最佳的散热性能;水套各测温点的数值模拟温度与实验测量温度之间的相对误差均低于5.00%。  相似文献   
85.
The melting effect with the magnetic field performs a significant role in various manufacturing and industrial applications, such as welding, casting, magma-solidification, nuclear engineering, and so forth. The present study focuses on the impact of the melting effect and magnetic field with inhomogeneous heat origination and sink. The formulation of the mathematical model is done by considering fluid with hybrid nanoparticles and dust particles in two different phases. We have considered Fe2SO4 and Cu as nanoparticles dispersed in the base fluid water along with suspended dust particles. The set of partial differential equations is reduced by using apt similarity variables and boundary conditions to obtain ordinary differential equations. The numerical solution is approximated using MATLAB-bvp4c adopting the shooting technique. The impact of numerous pertinent physical parameters on the velocity and thermal profiles is plotted and deliberated. Furthermore, the rate of heat flow and friction factor is also tabulated and visualized through the graphs. Streamlines are also drawn to know the behavior of the fluid flow. The rise in values of ME quickly increases the velocity of the fluid motion but declines the thermal gradient and thickness of its related boundary layer. Also, inclining values of Pr enhance the thermal profile due to the impact of melting.  相似文献   
86.
In this study, the heat and mass transfer of combined free and forced convection in the horizontal rectangle is explored. The governing equations together with the boundary conditions are solved numerically by using the finite volume method. The innovative idea in this study is to appropriately modify the Semi-Implicit Method for Pressure-Linked Equations algorithm and thereby, the numerical solutions of the flow variables such as the temperature and the concentration in addition to the components of velocity and the pressure are computed. The Richardson numbers (Ri) for distinct gases and liquids are calculated for different Rayleigh numbers at low (Re = 50) and high (Re = 5000) Reynolds numbers. The dimensionless parameters, such as the Reynolds number (Re), the Prandtl number (Pr), and the Schmidt number (Sc) are appropriately chosen to calculate the Richardson numbers. Consequently, combined free and forced convection effects are analyzed. Furthermore, the heat and mass transfer aspect for distinct gases and liquids is critically examined using empirical correlations. The accuracy and the validation of these results are ensured owing to the solutions obtained from correlations being advised in this study and those are existing in the literature.  相似文献   
87.
In this paper, analytical estimation of energy dissipations, such as viscous, Joulian, and Darcy dissipation of viscoelastic flow phenomena over a deformable surface has been presented. This supplement to the study of many transport processes, which occur in nature, and various experimental setups that are driven or modified by the composition of the various flow characteristics and material or phase constitution. These processes are very important and have received considerable attention in the literature. The estimation of dissipative energy in the process of transport energy is an important phenomenon to investigate. The present analysis is carried out on steady MHD viscoelastic liquid due to deformable domains. Moreover, the impact of internal heat sources and prescribed thermal conditions, such as surface temperature and heat flux, are carefully studied. Analytical solutions to governing equations are obtained with the help of Kummer's function. The solutions are presented graphically as well as in tables to estimate the energy losses and their effects on transport processes, which serve as the salient features of the current analysis. The outcomes serve as a guideline due to the process of transport properties as per the design requirements. Looking into the current scenario, dissipative heat energies have several applications in industries and technological processes, such as electric heaters, fuses, food processing, and several others.  相似文献   
88.
Recent research has shown that pulse-derived ingredients present a technological alternative to cereals, higher protein and fibre content, and differentiated starch characteristics. In this work, the partial substitution of pulse flours with and without heat moisture treatment (HMT) was evaluated in a biscuit model. The digestion residues at 20 and 120 min that correspond to rapidly, slowly and resistant starch from the Englyst methodology were analysed by DSC, X-Ray and ATR-FTIR. The use of pulse flours in biscuits improved their thermal stability (ΔH = 3.01 and 4.99 J/g for control and Lentil + HMT), preserving a fraction of particularly ling glucans, that influenced the decreasing in the rapidly available starch from 55.26 to 24.11 % (Control and Faba bean + HMT), and enhanced its protein's digestibility from 75.26 to 87.43 % for the same sources. Among pulses, there were similarities regarding their resistance to enzymatic hydrolysis that may help select those with better organoleptic attributes.  相似文献   
89.
Numerical investigation on the premixed H2/air combustion in a micro heat-recirculation combustor inserted with/without block is conducted. Effects of block setting, heat-recirculation, and flow rate on combustion characteristics and thermal performance are depicted and analyzed. The results demonstrate that the block enhances the flame stability and preheating effect, which also reduces the heat loss via exhaust gas, while it shortens reactants residence time. The combustor setting with a transverse block gains a better thermal performance than that inserted with a longitudinal block. With the increase of transverse block height, the high-temperature zone is broadened and radiation is improved. However, the block with a height of 10 mm separates the fluid field and weakens the effects of heat recirculation, leading to a lower outer wall temperature. Furthermore, the appropriate block insertion method and height contribute to the significant improvement of heat transfer, radiant efficiency and further optimization of micro power generator.  相似文献   
90.
A lightweight type 4 vessel with a polyethylene terephthalate (PET) liner is analyzed. The derived heat transfer coefficients between the gas and wall are applied, and a parametric study is performed. An optimized charging strategy is also developed. Firstly, when the injected hydrogen temperature decreases, the charging time increases, and the charged gas temperature decreases. Secondly, the higher the ambient temperature, the shorter the charging time, and the higher the charged gas temperature. Thirdly, the larger the mass flow rate, the shorter the charging time, and the higher charged gas temperature. Fourthly, as the initial pressure inside the vessel increases, the charging time shortens, and the charged gas temperature decreases. Fifthly, using the formulated charging strategy, during summer, the charged gas temperature decreases by approximately 9 °C. In winter, the charging time is reduced by approximately 58 s. The results provide important information of temperature control for ensuring vessel safety.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号